

Tetrahedron Letters 41 (2000) 8559-8563

TETRAHEDRON LETTERS

Fluorescein-fullerene dyads: a new kind of fullerene dyad—synthesis and their photophysical properties

Bingwen Jing, Deqing Zhang* and Daoben Zhu

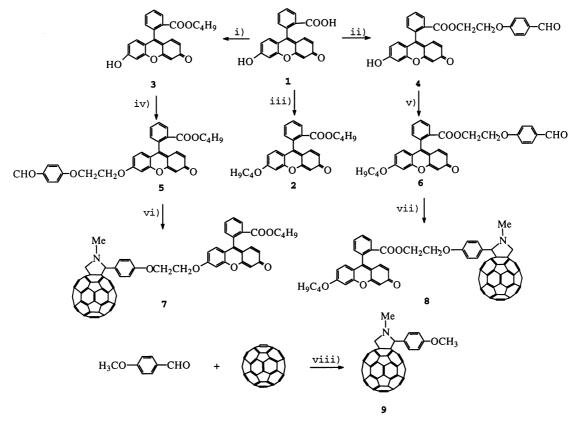
Organic Solids Laboratory, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, PR China

Received 22 June 2000; revised 30 August 2000; accepted 7 September 2000

Abstract

Two novel fluorescein– C_{60} dyads have been synthesized. Fluorescence quenching in the dyads indicates a photoinduced intramolecular electron transfer from the fluorescein to the C_{60} moiety. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: fluorescein; fullerene; photoinduced electron transfer.


Over the past decade, a great variety of dyads and more complex polyads consisting of electron donors and acceptors have been designed to investigate photoinduced energy and electron transfer (ET) processes and to mimic natural photosynthesis.¹ Fullerenes as novel electron acceptors, in particular the readily available C₆₀, present a wide range of chemical and physical properties that make them promising chromophores in photoinduced redox processes.² Many investigations show that C_{60} is a good electron acceptor. One of the most remarkable properties of C₆₀ related to electron transfer phenomena is that it can efficiently induce a rapid charge separation and a further slow charge recombination. These peculiar photophysical properties are due to the small reorganization energies of C₆₀ in ET.³ Therefore, a wide variety of C₆₀-donor dyads in which C₆₀ and a donor unit are covalently attached have been recently synthesized for investigations of their photoinduced electron transfer behavior.² The donors in these C₆₀-donor dyads include porphyrins,³⁻¹⁰ TTFs,^{11,12} polypyridine ruthenium(II) complexes,¹³ N,N-dialkylaniline,¹⁴ ferrocene¹⁵ and carotenoid.¹⁶ Among these, the systems consisting of porphyrins and C₆₀ are the most prominent and have been extensively studied. However, to the best of our knowledge, no reports concerning fluorescein (FL)-C₆₀ systems have appeared so far, although FL is a very important xanthene dye, which has many technical applications¹⁷ due to its high fluorescence quantum yield, excellent redox properties as well as relatively large

^{*} Corresponding author. E-mail: dqzhang@infoc3.icas.ac.cn

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01523-9

extinction coefficients at visible wavelengths. Also, FL contains two active groups—the hydroxyl and the carboxyl groups, which can be used to link FL to different electron donors or acceptors. Thus, FL was frequently used as electron donor/acceptor and sensitizer in artificial photosynthetic models.¹⁸ Based on these considerations, the FL–C₆₀ system may be a good model for the study of artificial photosynthesis. In order to investigate this possibility, we have synthesized two dyads 7 and 8, consisting of a FL covalently linked to a fullerene, as well as model compounds 2 and 9.

The synthesis was carried out as outlined in Scheme 1. The synthetic approach to compounds 7–9 relies upon the 1,3 dipolar cycloaddition of azomethine ylides to C_{60} . This methodology has proven to be one of the most powerful procedures for the functionalization of C_{60} due to its versatility and the ready availability of the starting materials. Therefore, reaction of aldehydes 5, 6 and *p*-anisaldehyde (0.1 mmol) with *N*-methylglycine (32 mg, 0.36 mmol) and C_{60} (72 mg, 0.01 mmol) in toluene (100 ml) under Ar at reflux for 8–12 hours, gave the corresponding fulleropyrolidines 7–9 after column chromatographic purification (silica gel, toluene/methanol, 50:1). The aldehydes 5, 6 and dibutyl fluorescein 2 were prepared by alkylation of FL using the corresponding alkylbromide in DMF at 90°C for 2–3 hours with anhydrous potassium carbonate as base. The structures of all these compounds were verified by spectroscopic analyses.¹⁹

Scheme 1. (i) 1-Bromobutane, anhydrous K_2CO_3 , DMF, 90°C for 2–3 hrs, 76%; (ii) 4-(2-bromoethoxyl)-benzaldehyde, *ibid.*, 75%; (iii) 1-bromobutane, *ibid.*, 85%; (iv) 4-(2-bromoethoxyl)-benzaldehyde, *ibid.*, 71%; (v) 1-bromotane, *ibid.*, 77%; (vi) *N*-methylglycine, Ar, toluene, reflux for 8–12 hrs, 30%; (vii) *ibid.*, 34%; (viii) *ibid.*, 28%

The UV-vis spectra of the dyads 7 and 8 (Fig. 1) consist simply of a superposition of the absorption spectra of the C_{60} and FL subunits, indicating that there is no appreciable interaction between the FL and C_{60} in the ground state. However, the steady-state fluorescence spectra of 7 and 8 (Fig. 2), taken in chloroform with the same concentration and excited at 460 nm where

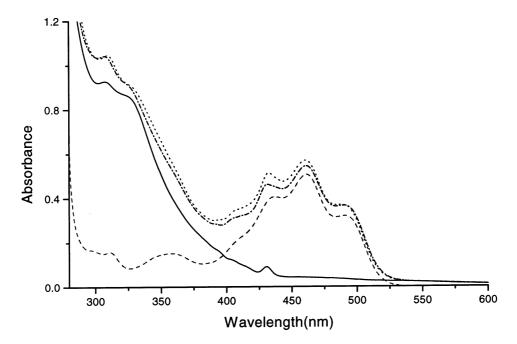


Figure 1. Electronic absorption spectra of 2 (dash), 7 (dot), 8 (dash dot) and 9 (solid) in CHCl₃ (2×10^{-5} M)

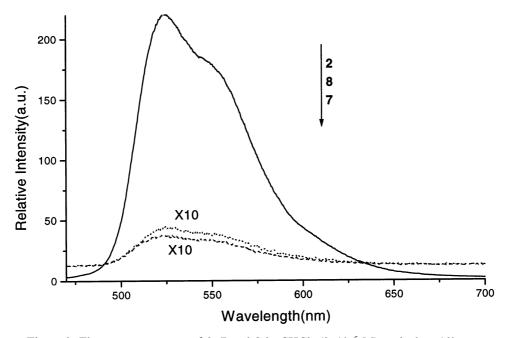


Figure 2. Fluorescence spectra of 2, 7 and 8 in CHCl₃ (2×10⁻⁵ M) excited at 460 nm

8562

the FL part mainly absorbs, show a significant difference compared with those of 2, 5 and 6. Whereas with 2, 5 and 6 a strong emission could be observed, the emissions of 7 and 8 are very weak, showing rapid quenching of the excited singlet state of FL by C₆₀. Besides, the emissions of 7 and 8 (480–650 nm) were observed only from the FL, without detectable emission from the C₆₀ (680–750 nm), while the emission from C₆₀ in model 9 was observed (680–750 nm). This shows there is no evidence for the existence of singlet-singlet energy transfer from ¹FL* to the C₆₀. These results imply that intramolecular photoinduced electron transfer from the FL to C₆₀ is a main pathway for the emission quenching in chloroform. The detailed photophysical properties of the two dyads, such as their fluorescence lifetimes and the rates of formation and lifetime of charge separation state are under investigation.

Acknowledgements

The authors thank the CAS for the financial support (KJ-951-A1-50103).

References

- 1. Fox, M. A.; Chanon, M. Photoinduced Electron Transfer; Elsevier: Amsterdam, 1988.
- 2. Martín, N.; Sánchez, L.; Illescas, B.; Pérez, I. Chem. Rev. 1998, 98, 2527-2547.
- 3. Hiroshi, I.; Yoshiteru, S. Eur. J. Org. Chem. 1999, 2445-2457.
- Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1999, 121, 8604–8614.
- 5. Wedel, M.; Montforts, F.-P. Tetrahedron Lett. 1999, 40, 7071-7074.
- 6. Koji, Y.; Hiroshi, I.; Yoshinobu, N.; Iwao, Y.; Yoshiteru, S. Chem. Lett. 1999, 895-896.
- 7. Manoru, F.; Osamu, I.; Hiroshi, I.; Koji, Y.; Hiroko, Y.; Yoshiteru, S. Chem. Lett. 1999, 721-722.
- 8. Cheng, P.; Wilson, S. R.; Schuster, D. I. Chem. Commun. 1999, 89-90.
- 9. Koichi, T.; Hiroshi, I.; Yoshinobu, N.; Iwao, Y.; Yoshiteru, S. Chem. Commun. 1999, 625-626.
- Tkachenka, N. V.; Rantala, L.; Tauber, A. Y.; Helaja, J.; Hynninen, P. H.; Lemmetyinen, H. J. Am. Chem. Soc. 1999, 121, 9378–9387.
- 11. Martín, N.; Sánchez, L.; Seoane, C.; Andreu, R.; Garín, I.; Orduna, J. Tetrahedron Lett. 1996, 37, 5979.
- 12. Simonsen, K. B.; Konovalov, V. V.; Konovalova, T. A.; Kawai, T.; Cava, M. P.; Kispert, L. D.; Metzger, R. M.; Becher, J. J. Chem. Soc., Perkin Trans. 2 1999, 657–665.
- 13. Maggini, M.; Dono, A.; Scorrano, G.; Prato, M. J. Chem. Soc., Chem. Commun. 1995, 845.
- 14. Williams, R. M.; Zwier, J. M.; Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 4093.
- 15. Guldi, D. M.; Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1997, 119, 974–980.
- Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen, D.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1997, 119, 1400–1405.
- 17. Neckers, C. D.; Oscar, M. V.-A. Adv. Photochem. 1995, 18, 315.
- 18. Zhang, H.; Zhang, M.; Shen, T. Sci. China (Ser. B) 1997, 40 (5), 449-456.
- Spectroscopic data for 7: ¹H NMR (300 MHz, CDCl₃): δ 8.28 (1H, d), 7.76–7.68 (4H, m), 7.25 (1H, d), 7.20–6.92 (5H, m), 6.90–6.65 (3H, m), 5.04–5.01 (2H, d, unresolved, 1H of CH_AH_{B+} 1H of CH in pyrrolidine), 4.47–4.25 (5H, m, 1H of CH_AH_B in pyrrolidine+OCH₂CH₂CH₂O), 3.98 (2H, m, -COOCH₂–), 2.84 (3H, s, -NCH₃), 1.38–1.28 (2H, m, -CH₂CH₂CH₂CH₃), 1.13–1.03 (2H, m, -CH₂CH₂CH₂CH₃), 0.81–0.76 (3H, t, -(CH₂)₃CH₃). ¹³C NMR (300 MHz, CDCl₃): δ 165.2, 163.7, 158.8, 158.2, 154.6, 147.1, 146.1, 146.0, 145.9, 145.7, 145.3, 145.2, 145.1, 145.0, 144.9, 144.5, 144.2, 144.1, 142.9, 142.5, 142.4, 142.0, 141.8, 141.7, 141.5, 141.3, 139.9, 139.7, 139.6, 139.3, 136.7, 136.4, 135.7, 135.5, 133.7, 133.6, 132.5, 131.3, 131.2, 131.0, 130.9, 130.8, 130.4, 130.1, 129.7, 129.3, 129.2, 128.9, 128.8, 128.7, 128.6, 128.4, 128.0, 127.5, 117.5, 115.2, 114.6, 105.3, 100.6, 82.8, 77.5, 76.4, 69.5, 68.6, 67.4, 65.4, 39.8, 30.0, 18.9, 13.4; FT-IR v/cm⁻¹, 2953, 1720, 1642, 1597, 1510, 1448, 1377, 1285, 1247, 1206, 1105, 853, 758,

527; MALDI-TOF m/z 1283 (M⁺). Spectroscopic data for 8: ¹H NMR (300 MHz, CDCl₃): δ 8.32 (1H, d), 7.91-7.60 (4H, m), 7.25 (1H, d), 6.91-6.80 (2H, m), 6.72-6.64 (3H, m), 6.58-6.01 (3H, m), 5.03-4.94 (2H, m, 1H of CHAHB+ 1H of CH in pyrrolidine), 4.30-4.20 (3H, m, 1H of CHAHB in pyrrolidine and COOCH₂CH₂O-C₆H₄-), 4.05-3.70 (2H, m, -OCH₂C₃H₇), 3.75-3.52 (2H, m, -COOCH₂CH₂O-C₆H₄-), 2.83 (3H, s, NCH₃), 1.90–1.70 (2H, m, –OCH₂CH₂C₂H₅), 1.60–1.40 (2H, m, –OCH₂CH₂CH₂CH₃) 1.05–0.96 (3H, m, OC₃H₆CH₃); ¹³C NMR (300 MHz, CDCl₃): δ 165.2, 158.8, 158.7, 158.1, 156.3, 154.6, 154.5, 154.0, 153.9, 153.7, 153.5, 147.3, 146.5, 146.3, 146.2, 146.1, 145.9, 145.5, 145.4, 145.3, 145.2, 145.1, 144.7, 144.4, 143.2, 143.0, 142.7, 142.6, 142.2, 142.1, 142.0, 141.6, 140.2, 139.6, 136.4, 135.9, 135.8, 134.2, 132.9, 131.8, 130.4, 129.8, 129.5, 129.3, 129.0, 117.4, 114.8, 114.5, 105.5, 100.7, 100.6, 83.0, 77.3, 77.2, 69.9, 68.9, 65.2, 63.8, 40.0, 30.9, 19.2, 13.9; FT-IR v/cm⁻¹ 2953, 1725, 1642, 1596, 1510, 1376, 1282, 1250, 1207, 1179, 1106, 853, 758, 527; MALDI-TOF m/z 1283 (M⁺). Spectroscopic data for 9: ¹H NMR (300 MHz, CS₂): δ 7.87 (2H, d, H m to methyl in phenyl), 7.10 (2H, d, H o to methyl in phenyl), 5.15 (1H, d, 1H of CH_AH_B in pyrrolidine), 5.09 (1H, s, CH in pyrrolidine), 4.48 (1H, d, 1H of CH_AH_B in pyrrolidine), 4.02 (3H, s, -OCH₃), 3.03 (3H, s, -NCH₃); ¹³C NMR (300 MHz, CS₂): 153.9, 147.5, 147.2, 146.9, 146.7, 146.5, 146.4, 146.2, 146.0, 145.9, 145.7, 145.6, 145.5, 145.4, 145.3, 145.2, 145.1, 144.9, 144.7, 144.3, 143.4, 143.3, 142.9, 142, 7, 142.5, 142.4, 142.4, 142.0, 141.9, 141.8, 141.6, 141.2, 140.5, 139.9, 137.0, 136.1, 135.0, 130.8, 128.6, 114.2 (2), 83.1, 77.7, 70.0, 69.8, 64.3, 40.0; FT-IR v/cm⁻¹ 2778, 1611, 1511, 1643, 1332, 1302, 1249, 1179, 1107, 1035, 841, 832, 765, 527; MALDI-TOF m/z 883 (M⁺).